
JOURNAL OF COMPUTATIONAL PHYSICS 82, 85-93 (1989) 

incorporation and Test of Diffusion and Strain 
Effects in the Two-Dimensional Vortex Blob Technique 

E. MEIBURG * 

Department of Chemical Engineering, 
Stanford University, Stanford, California 94305 

Received August 5, 1987; revised April 27, 1988 

Vorticity diffusion as well as small scale strain effects in a rotational fluid layer are incor- 
porated in the vortex blob technique by changing the blob size. While the strain effect is com- 
puted by approximating the derivative of the normal velocity component across the layer, the 
vorticity diffusion is accounted for on the basis of the similarity solution for a diffusively 
spreading vortex sheet. This approach, which presents an alternative to the random walk 
method, allows us to track vorticity fronts in flows that do not conserve circulation such as 
miscible multiphase Hele-Shaw flows. We test the numerical method by comparing numeri- 
cally obtained linear growth rates for an inviscid parallel shear layer and a miscible displace- 
ment process in a porous medium to exact results obtained from linear stability theory. When 
compared to the constant size vortex blob technique, the present extensions yield greatly 
improved results for the inviscid shear layer. For the dilfusively spreading rotational layer 
arising in the miscible displacement process, the numerically obtained time-dependent growth 
rates show good quantitative agreement with exact results. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

The evolution of the vorticity field in incompressible inviscid flow is governed by 
the theorems of Kelvin and Helmholtz [ 11. This has stimulated the development of 
Lagrangian vortex methods for the purpose of numerically simulating such flows 
[2, 33. Rosenhead [4] was the first one to discretize a vortex sheet into point 
vortices and to numerically compute its rollup. While the point vortex method 
represents an exact solution of the Euler equations, this highly singular form of dis- 
cretizing the vorticity field leads to problems regarding the accuracy and stability 
of long-time integrations [S]. Furthermore, the vorticity in a flow is usually spread 
out over layers of finite thickness. As a result, more recent applications have 
replaced the point vortices by vortex blobs of finite cores, e.g., Chorin [S]. The 
convection velocity of the vortex blobs is usually approximated by the velocity 
induced at the blob center, although higher accuracy schemes exist, cf. Leonard 
[2]. Their usually circular shape is maintained throughout the simulation, and a 
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smooth vorticity distribution is achieved by letting the cores overlap. In this way, 
the vortex blobs are not viewed as isolated patches of vorticity but rather as collec- 
tively forming a rotational layer of fluid. However, as pointed out by Leonard [2], 
the constant core shape and size of the blobs do not allow for the vorticity field to 
deform according to the local strain field of the flow. This effect becomes noticable, 
for example, when one tries to calculate the growth rates of the Kelvin-Helmholtz 
instability of a finite thickness shear layer discretized into one row of vortex blobs. 
Due to the finite thickness of the velocity profile, there is a short wavelength cutoff 
and a wavenumber of maximum amplification. While the growth rates obtained 
analytically from inviscid linear stability theory [7] are approximately reproduced 
for long wavelength perturbations, constant size vortex blob simulations [8] and 
stability calculations [9] show that the results for the growth rates of short waves 
are completely unsatisfactory. The reason for this lies in the fact that the evolution 
of the vorticity distribution is more complicated than that which can be represented 
by a mere displacement of the blobs. Under the influence of the induced strain, the 
vertical layer is subject to local thickening and thinning, which counteracts the 
growth of short waves. A discretization of the shear layer into many layers of vortex 
blobs [lo], on the other hand, reproduces these effects and can be expected to 
result in better agreement with the analytical results, the price being higher com- 
putational costs. In this note, we describe and test an extension of the vortex blob 
method that captures the main effects of the local strain using one layer of vortex 
blobs. This is achieved by allowing the core radii of the blobs to vary as a result 
of the strain, in a way similar to the one briefly discussed in [ 111. 

The goal of simulating high but finite Reynolds number flows based on their vor- 
ticity dynamics lead Chorin [6] to incorporate slight viscous effects into the vortex 
blob method. This was achieved by superimposing a random walk component on 
the purely inviscid motion calculated from the Biot-Savart law, thus simulating the 
diffusion of vorticity. While this approach has subsequently demonstrated its ability 
to reproduce many of the large scale features of turbulent flows (e.g., [12]), its 
applicability seems to be limited to simulations of flows in which the circulation is 
conserved. However, for many flows these conservation laws do not hold, and 
knowledge of the local flow features is needed in order to update the vorticity dis- 
tribution, such as in vortex dynamics simulations of the Saffman-Taylor instability 
(e.g., [13]). As Tan and Homsy [14] show, it is very important for an accurate 
simulation of miscible displacement processes in Hele-Shaw flows to capture the 
dynamics that lead to the steepening of the concentration profile and the related 
vorticity front. As a result, we cannot deal with these flows by using constant size 
vortex blobs and instead we have to use a new approach to account for diffusion 
of vorticity. This diffusion of vorticity is the physical mechanism that causes very 
short wavelengths to be damped, so that this type of flow, just like the finite thick- 
ness shear layer, exhibits a wavenumber of maximum growth and a short 
wavelength cutoff. The method to be discussed and tested below represents the 
diffusion of the vertical layer through diffusive growth of the vortex blob cores, as 
suggested by Leonard [2]. Our interest thus focuses on flows in which physical 
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mechanisms determine a wavelength of maximum growth as well as a short 
wavelength cutoff. Hence it is essential that a good numerical technique reproduces 
these wavelengths accurately. Such problems are fundamentally different from the 
rollup of an inviscid zero thickness shear layer, which has been the focus of a large 
body of literature of its own; see, e.g., Krasny [15]. Since in that case the flow does 
not exhibit a characteristic length scale, i.e., no physical mechanism to provide a 
wavelength of maximum amplification, Krasny’s work is concerned with a purely 
numerical smoothing procedure and its convergence to the zero thickness problem. 
It should furthermore be emphasized that our interest focuses on the development 
of a front tracking method, while problems involving distributed vorticity might 
favor different approaches. 

2. NUMERICAL ALGORITHM 

In the following, we want to compute the evolution of a flow that has a rota- 
tional layer of fluid discretized into a row of N vortex blobs of radius gi and circula- 
tion ri, as shown in Fig. 1. The traditional approach for the numerical computation 
of the vorticity layer evolution calculates the velocity induced at the center of each 
vortex blob by all vortex blobs in the flow field and subsequently moves the blobs 
over a finite time step, leaving their shape and size unchanged. In the following, we 
describe and test the implementation of vorticity diffusion and of strain effects 
influencing the thickness of the layer. 

(a) The Effect of the Strain Field 

Our goal is to take into account the local thickening and thinning of the vorticity 
layer, which results from the strain induced during the instability of a rotational 
fluid layer. We keep in mind that we do not think of the vortex blobs as represent- 
ing isolated patches of vorticity but rather as collectively forming a rotational fluid 
layer. Since we use overlapping blobs in order to obtain a smooth vorticity distribu- 
tion, we do not have to conserve the size of the individual blob and can focus rather 
on capturing the strain effect on the layer thickness. This can be achieved by allow- 
ing the radius of each vortex blob to vary according to the local strain field. For 
this purpose, we need to evaluate the veIocity component U, perpendicular to the 
layer and its derivative in the direction x, normal to the layer. This component 
&,/ax,, of the strain tensor is responsible for the thickening and thinning of the 
rotational fluid layer. It is obtained in the following way: First we fit a cubic spline 
through the centers of all vortex blobs of the vorticity layer and thus obtain the 
direction of its centerline everywhere. As a next step, we find the points (x,~, JJ,,), 
(.x,~, y,,) on the envelope of the vorticity layer as those being one core radius 0, 
away from the center of blob i in the direction perpendicular to the layer’s cen- 
terline (Fig. 1). We can now calculate the velocity components U, at (x,~, y,,), 
(xri, y,,) and approximate &,/ax, as (u,(xli, vti) - u,,(xri, ~~~~))/20,. The resulting 
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FIG. 1. A rotational fluid layer discretized into vortex blobs of radius ci. A cubic sphne tit through 
all the blob centers gives the direction of the layer everywhere. The component au,/ax, of the strain 
tensor is responsible for the local thickening and thinning of the vertical layer and can be approximated 
using the velocities at the envelope of the layer and the blob radius. 

change in the core radius of vortex blob i over the time step dt is then 
approximately 

Alternatively, &,/ax, could be evaluated from the derivative of the tangential 
velocity component along the centerline and the continuity equation. 

As mentioned above, the main goal of the present work is to develop a front 
tracking algorithm for flows that do not conserve circulation. However, because of 
the availability of stability results for comparison purposes, we will, as an example, 
compute the evolution of an inviscid parallel shear flow, which is governed by the 
Euler equations. If we assume the flow to be periodic in the x-direction and the 
velocity profile across the layer is of the form 

u(y) = 0.5 . ( 1 + erf( y/a)) 

the appropriate distribution function of the vorticity o over the vortex blob as a 
function of the radial coordinate r is 

w(r) = Ti/(m2) .exp( - r2/a2). 

The circulation fi of the vortex blob represents the integral over its vorticity dis- 
tribution. We calculate the velocity induced at the center of each vortex blob and 
at the points on the envelope of the layer by all N vortex blobs in the control 
volume and their periodic images from 

rj exp( - r’/a’) - 
I” sinh(2n( y - y,)/L) 

2L(cosh(2+-y,)/L)-cos(2rr(x-xi)/,!,)) 

u(x, y) = 5 - x3 rjexp( - r”/a’) + 
fjsin(27r(x - xj)/L) 

j= 1 ~L(COS~(~~(Y-Y~)/L)-COS(~Z(X-~~)/L)) 

(1) 

Here L is the x-dimension of the periodic control volume under consideration, and 
all but the closest image of the blobs are treated as point vortices. An initial sine 
wave perturbation of amplitude lOPa displaces the vortex blob centers in the 
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y-direction. The time-step is taken as 0.1. Test calculations showed that a reduction 
of the time-step by a factor of ten changed the results by less than one percent. We 
monitor the displacement y, of the vortex blob with the maximum initial perturba- 
tion. The growth rate can then be calculated from the values of y, before and after 
every time-step. Since our initial perturbation does not duplicate the eigenfunction 
exactly, the computed growth rate converges to a steady value only after a few 
time-steps. Subsequently it remains constant to at least three digits for a time 
period during which the perturbation grows by several orders of magnitude. 

Below we compare the growth rates obtained by taking strain effects into account 
in the way described above to those obtained with constant size cores as well as to 
the analytical ones given by Nakamura et al. [lo] (Fig. 2). The curve labeled 1 
represents the analytical growth rates as computed from the Rayleigh equation by 
Nakamura et al. [lo]. Curve 2 shows the numerical results obtained by taking into 
account the local thickening and thinning of the layer. The spacing of the vortex 
blobs in the streamwise direction is approximately one half of a core radius. As a 
result, the calculation of the growth rate for the wavenumber k=O.l employed 109 
vortex blobs, while the calculation for k = 1.0 used 9 vortex blobs. Corresponding 
calcultions for a spacing of one quarter and one eighth of a core radius resulted in 
a change of the growth rate of less than two percent. The maximum deviation 
occurred for short waves, while for long waves even a relatively large spacing of the 
blobs yields converged results. Curve 3 shows results obtained with constant size 
vortex blobs. Again the spacing is approximately one half of a core radius; a smaller 
spacing does not change the growth rate by more than two percent. It is obvious 
that the inclusion of the strain effects results in much better agreement with the 
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FIG. 2. Growth rates for the Kelvin-Helmholtz instability instability of an inviscid parallel shear 
layer with an error function velocity profile vs. wavenumber k. 1. analytical results [lo]; 2. converged 
numerical results obtained with the vortex blob technique taking into account the local thickening and 
thinning of the vertical fluid layer; 3. converged numerical results obtained with constant size vortex 
blobs. 
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analytical results. Although the maximum growth rate is still about 50% too large, 
both the cutoff wavelength and the wavelength exhibiting maximum growth are 
approximately reproduced. The fixed size vortex blob calculation, on the other 
hand, does not show a clear maximum or a cutoff wavelength. The presence of a 
cutoff wavelength is an important feature, since even if a calculation initially only 
contains long waves, nonlinearity will give rise to short wavelength components. As 
a result, the presence of a cutoff wavelength has to be seen as a significant improve- 
ment over the fixed size blob method, even though the quantitative agreement of 
the variable blob size technique with linear stability theory is not completely 
satisfactory. We must keep in mind that the current numerical model is still 
relatively crude, as the shape of the vorticity distribution function over the vortex 
blob remains unchanged and, close to the cutoff, one wavelength is less than three 
times the average vortex blob diameter. Under these circumstances, the above 
degree of quantitative agreement seems to be the best we can hope for. 

(b) The Effect of Vorticity Diffusion 

In order to allow for the vorticity to spread diffusively, we apply a splitting algo- 
rithm that treats the convective and diffusive components of the vorticity evolution 
separately. This approach is similar to the one taken by Chorin [6]; however, his 
random walk technique was developed for the inclusion of viscous effects in flows 
that conserve circulation. Since our interest lies in the simulation of vorticity 
dominated flows that do not conserve circulation, we have to take diffusive effects 
into account in a different manner. The numerical approach will be explained for 
the example of a diffusively spreading parallel shear flow in which the vorticity 
satisfies a convective-diffusive equation with the transport coefficient v. First we 
evaluate the velocities at the centers of the vortex blobs from the Biot-Savart law 
according to (1) and convect the vortex blobs over the time step At, also taking 
into account the strain effect. In a second step, we model the diffusive effects by per- 
forming a local l-dimensional analysis of the vorticity layer at the location of each 
vortex blob. For this purpose, we treat the vorticity layer at the location of a vortex 
blob of radius 6, as if it had the thickness 2a, everywhere and had evolved from the 
diffusive spreading of a plane vortex sheet, which is known to proceed according to 
the similarity solution 

o(y, t) = 0.5/(nvt)“2 e-(:Z’4vt). 

Consequently, we can calculate a hypothetical age tii of the vorticity layer at the 
location of blob i as 

t li = af/4v. 

As a result, the change in thickness of the vorticity layer over the time step At can 
then be calculated as 

Aoi = a,( (1 + A?/c~~)~‘~ - 1). 
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We finally obtain the thickness of the vorticity layer at the location of vortex blob 
i, i.e., the diameter of vortex blob i, at the end of the time step by superimposing 
the changes in thickness resulting from the straining and the diffusive effects. 

As a test case for the time-splitting algorithm described above, we have calculated 
the linear growth rates of a rectilinear miscible displacement process in a porous 
medium in which a less viscous fluid penetrates a more viscous one. This flow, 
which is governed by Darcy’s law, is known to be unstable, resulting in the forma- 
tion of viscous fingers (for an overview, see Homsy [ 163). A vertical fluid layer 
forms where two miscible components diffuse into each other, whereas the rest of 
the flow field remains irrotational. Hence, a front tracking algorithm based on the 
vorticity dynamics of the flow offers certain advantages. The circulation is no longer 
conserved as for inviscid flow, and instead it depends on the continuously changing 
velocity and concentration fields (details are given in [ 171). Nonlinear calculations 
by Tan and Homsy [ 141 demonstrate the importance of strain and diffusion effects 
on the dynamics of the displacement process. They control the degree of steepness 
of the concentration profile and the related vorticity front, and their balance deter- 
mines whether or not tip-splitting occurs. This in turn affects the sweep efficiency 
of the whole displacement process. Hence it is obvious that these flows cannot be 
dealt with on the basis of a front representation by a layer of vortex blobs of con- 
stant size. A rigorous treatment of the corresponding linear stability problem is 
given by Tan and Homsy [ 181, and we will compare our numerical results to their 
exact results. They derive and discuss the appropriate scaling of the problem as well 
as the definition of the growth rate, which is time-dependent due to the fact that 
the base flow changes continuously as a result of diffusion. Figure 3 shows the 
growth rates obtained from the quasi-steady-state approximation of Tan and 
Homsy [lS] as well as those of the vortex blob simulation for periodic perturba- 
tions of three different wavelengths. As in the previous case, we start from a wavy 
initial displacement of the vortex blobs. We have checked the convergence of our 
numerical results by reducing the blob spacing as well as the time-step. The 
mobility ratio of the two fluids is 20.09 for all cases. The curve labeled 1 shows the 
exact results of Tan and Homsy [18]. Curve 2 gives the numerically obtained 
growth rates of the displacement amplitude, while curve 3 displays the numerically 
obtained values of the velocity growth rates. A calculation employing constant size 
blobs, on the other hand, would yield growth rates that do not vary in time and 
depend on the initial thickness of the rotational layer. We find very good quan- 
titative agreement between the variable blob size calculations and the exact results 
for all but very short times, at which the quasi-steady-state approximation cannot 
be expected to hold. As for the inviscid shear layer analyzed above, the quantitative 
agreement improves for longer waves. 

As the calculation continues in time, nonlinear effects become more important as 
the amplitude of the evolving fingers grows. Figure 4 compares the periodic array 
of fingers obtained from a variable size vortex blob calculation with results of the 
spectral code of Tan and Homsy [ 141. While the evolving fingers have nearly iden- 
tical shapes, the fingers in the vortex dynamic dynamics calculation develop slightly 
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FIG. 3. Growth rates for the viscous fingering instability of a rectilinear miscible displacement pro- 
cess in a porous medium vs time. (a), (b), and (c) represent results for wavenumbers 0.1, 0.2, and 0.3, 
respectively: 1. exact results obtained for the linear stability problem via the quasi-steady-state 
approximation [ 181; 2. numerically obtained growth rates of the displacement amplitude of the centerline 
of the vertical fluid layer; 3. numerically obtained growth rates of the velocity disturbance. The vortex 
dynamics computation yielding the growth rates 2 and 3 accounts for the effects of strain and diffusion. 
Calculations employing constant size vortex blobs would yield growth rates that do not vary in time and 
depend on the thickness of the rotational layer. 

FIG. 4. Comparison of nonlinear finger shapes at identical times: -, vortex dynamics calcula- 
tion; --, spectral method simulation (courtesy of C.-T. Tan and G. M. Homsy). While the finger shapes 
are nearly identical, the vortex dynamics calculation develops slightly slower in time. 
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slower in time. However, it is obvious that the variable size vortex blob technique 
is well suited for studying the dynamics of miscible viscous lingering, especially in 
geometries for which spectral collocation methods for front tracking problems are 
difficult to design. 

In conclusion, the extensions of the vortex blob method discussed above allow us 
to capture the main effects of the strain field and the vorticity diffusion on the 
evolution of the rotational fluid layer even for flows that do not conserve circula- 
tion. In this way, the vortex blob front tracking technique gains the ability of 
simulating important dynamical features in an efficient manner. For the test case of 
an inviscid parallel shear layer, our technique reproduced the analytical growth 
rates much more closely than the constant size vortex blob method. Furthermore, 
it gives a realistic cutoff length. For a miscible displacement process governed by 
Darcy’s law, our technique showed good quantitative agreement for the linear 
growth rates. We have validated our numerical method against know results from 
linear stability theory and reproduced nonlinear linger shapes observed in spectral 
calculations. 
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